

WP4 – Development of an interoperable and secure

PHOENIX Smartness Hub based on an ICT solution

 Document Version:

D4.2 PHOENIX Smartness Hub

implementation – Intermediate Version
2.0

Project

Number:

Project

Acronym: Project Title:

893079 PHOENIX Adapt-&-Play Holistic cOst Effective and user-frieNdly Innovations with

high replicability to upgrade smartness of eXisting buildings with legacy

equipment

Contractual Delivery Date: Actual Delivery Date: Deliverable Type* - Security**:

28/02/2022 28/02/2022 R - PU

* Type: P - Prototype, R - Report, D - Demonstrator, O - Other

** Security Class: PU- Public, PP - Restricted to other programme participants (including the Commission), RE - Restricted to a group defined

by the consortium (including the Commission), CO - Confidential, only for members of the consortium (including the

Commission)

 PHOENIX Consortium

Ref. Ares(2022)1438526 - 25/02/2022

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Responsible and Editor/Author: Organization: Contributing WP:

Alfredo Quesada OdinS WP4

Authors (organizations):

OdinS, SAGOE, UMU, UBITECH, S5, MIWENERGIA, VERD

Abstract:

This document details the intermediate version of the Smartness Hub implementation. At this stage, the

implementation of the Smartness Hub has been extended to the other pilots and, in an attempt to

prepare the Knowledge Layer for providing a more rich representation of the information, the

Knowledge Graph has been extended and more work on semantics has been done. A first SRI model

has also been included.

User and grid services have also been updated since they were introduced in D4.1, as well as the

Security & Privacy framework.

Keywords:

Smartness Hub; Knowledge Graph; SRI; Data analytics services; Security and Privacy.

Disclaimer: The present report reflects only the authors’ view. The European Commission is not responsible for any use that may be made of the

information it contains.

22/02/2022 -v.2.0 Page 2 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Revision History

The following table describes the main changes done in the document since created.

Revision Date Description Author (Organization)

0.1 20/01/2022 ToC Draft Alfredo Quesada (OdinS)

0.2 03/02/2022 Security framework Alfredo Quesada (OdinS)

0.3 09/02/2022 Data analytics for grid integration services Valentina Tomat (UMU)

Alfonso Ramallo (UMU)

0.4 10/02/2022 Knowledge graph Josiane Parreira (SAGOE)

Stefan Bischof (SAGOE)

0.5 16/02/2022 Data analytics for user-centric services, data

analytics for grid integration services, updates on

KG section, SAREF4ENER

Dimitra Georgakaki (Ubitech)

Kostas Tsatsakis (S5)

Josiane Parreira (SAGOE)

Alfonso Ramallo (UMU)

1.0 17/02/2022 Updates on data analytics for grid integration

services and security framework

Alfonso Ramallo (UMU)

2.0 22/02/2022 Final version including the comments received

from the reviewers

Aristotelis Dafalias (VERD)

Pablo Barrachina

(MIWENERGIA)

Alfredo Quesada (OdinS)

22/02/2022 -v.2.0 Page 3 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Executive Summary

This document is the second part of a set of deliverables that describes the development and

implementation of the PHOENIX Smartness Hub.

After the first part of the set, which was focused on a basic representation of the information

using Smart Data Models in the Context Broker, this document extends this representation taking

the Knowledge Graph to a next level by adding a triplestore. Apache Jena Fuseki has been

chosen for this purpose and will provide the semantics required by services from upper layers in

what was introduced in D4.1 as the Knowledge Layer. A first version of the SRI model is also

introduced using the RDF Data Cube Vocabulary.

From the data analytics services side, basic but operational versions of user-centric and grid-

related services are included in this document with both using real data.

And in the security section, the list of risks identified in D4.1 has been analysed and there has

been included a description of how the Security & Privacy framework deals with each one of

them. In addition a fully functional version of the security components is described as well as

some details of the deployment based on the requirements identified in the different pilot sites.

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and

innovation program under grant agreement No 893079, but this document only reflects the

consortium’s view. The European Commission is not responsible for any use that may be made

of the information it contains.

22/02/2022 -v.2.0 Page 4 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table of Contents

1 Introduction .. 10

1.1 Scope of the document .. 10

1.2 Relevance to other deliverables .. 10

1.3 Structure of the document .. 10

2 Integrated Data Models, Knowledge Graphs and Automatic Semantics 11

2.1 Knowledge Graph ... 11

2.2 SRI model ... 13

2.3 Energy flexibility data uses a subset of SAREF ... 16

2.4 Automatic Semantics ... 17

3 Data analytics services ... 18

3.1 Data analytics for user-centric services ... 18

3.1.1 Occupancy nowcasting and forecasting for building occupants 18

3.1.2 Default Comfort calculation for building occupants ... 20

3.1.3 Descriptive analytics for the delivery of basic metrics ... 21

3.2 Data analytics for grid integration services .. 22

3.2.1 Context of algorithms for grid integration .. 22

3.2.2 Algorithms for forecasting, now-casting and benchmarking 24

3.2.3 Algorithms set for optimal operations for grid integration services 25

3.2.4 Investigation of pilot's real data for algorithms testing ... 27

4 Privacy and Security ... 31

4.1 Overview .. 31

4.2 Risk analysis associated to privacy/security features ... 31

4.2.1 Non-functional risks .. 31

4.2.2 Functional risks ... 33

4.3 Security Components .. 35

4.3.1 Architecture ... 36

22/02/2022 -v.2.0 Page 5 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

4.3.2 Components ... 37

4.3.3 Interactions .. 44

4.3.4 Proxies deployed ... 46

4.4 Integration of different technologies requiring security and/or privacy 47

4.4.1 Z-Wave / WMP ... 47

4.4.2 Platform to Platform (LTU pilot) .. 49

4.4.3 MQTT .. 49

4.5 Security Policies ... 50

5 Conclusions .. 52

6 References ... 53

7 Annex I ... 54

8 Annex II .. 56

22/02/2022 -v.2.0 Page 6 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table of Figures

Figure 1 – Current Architecture (extended from the PoC-only version) 11

Figure 2 – Actuation model 13

Figure 3 – Conceptual overview of the SRI model 14

Figure 4 – Architecture and components for flexibility 23

Figure 5 – Communication flow with Algorithms Engine 24

Figure 6 – Hydropower generation forecast 25

Figure 7 – Time series of the HVAC use (ON/OFF representation) (Office 14) 29

Figure 8 – Time series of the HVAC use (ON/OFF representation) (Office 15) 30

Figure 9 – Time series of the HVAC use (ON/OFF representation) (Office 16) 30

Figure 10 – Time series of the HVAC use (ON/OFF representation) (Office 17) 30

Figure 11 – Forecasting of room temperature measured by HVAC 31

Figure 12 – Security components / Architecture 36

Figure 13 – Keyrock / User list 37

Figure 14 – PAP / Main view 39

Figure 15 – PAP / Management of Attributes 40

Figure 16 – PAP / Management of Policies 40

Figure 17 – Sequence diagram of a full secure access to a resource using the S&P framework 45

Figure 18 – Proxies deployed in the Smartness Hub 46

Figure 19 – Get authentication token 47

Figure 20 – Get authorisation tokens for actuation 48

Figure 21 – Using the tokens (GET and POST) in the Actuation flow 48

Figure 22 – Get authorisation tokens for publishing readings 48

Figure 23 – Using the token to send readings (POST) 49

22/02/2022 -v.2.0 Page 7 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table of Tables

Table 1 – Calculations per KPI...21

Table 2 – Types of devices based on their shifting capabilities ...25

Table 3 – Description of the algorithm used for the multi-objective optimisation ..27

Table 4 – Analysis of the setpoint temperature set for the four main offices of the UMU pilot28

Table 5 – Non-functional risks in PHOENIX ...32

Table 6 – Functional risks in PHOENIX. ...34

Table 7 – Deployed instances of PEP Proxy ..47

Table 8 – Policies for the Context Broker ..50

Table 9 – Policies for the Actuation Agent ..51

Table 10 – Policies for the Historical Data component ...51

22/02/2022 -v.2.0 Page 8 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Acronyms

Abbreviation Description
API Application Programming Interface
BMS Building Management System
CB Context Broker
CP-ABE Cyphertext-Policy Attribute-Based Encryption
DCapBAC Distributed Capability-Based Access Control
DLC Direct Load Control
DRE Demand Response Event
EV Electric Vehicle
HMM Hidden Markov Model
HTTP Hypertext Transfer Protocol
IDM Identity Management/Manager
IoT Internet of Things
ISP Imbalance Settlement Period
JSON JavaScript Object Notation
KG Knowledge Graph
MQTT Message Queuing Telemetry Transport
NGSI-LD Next Generation Service Interfaces – Linked Data
NSGA Nondominated Sorting Genetic Algorithm
OWL Web Ontology Language
PAP Policy Administration Point
PEP Policy Enforcement Point
PoC Proof of Concept
RDF Resource Description Framework
REE Red Eléctrica Española
RFC Random Forest Classifier
REST Representational Estate Transfer
SAREF Smart Applications REFerence
SAREF4ENER SAREF for Energy
S&P Security and Privacy
SCADA Supervisory Control and Data Acquisition
SOSA Sensor, Observation, Sample and Actuator (Ontology)
SPARQL Simple Protocol And RDF Query Language
STD Standard Deviation
TLS Transport Layer Security
SRI Smart Readiness Indicator
USEF Universal Smart Energy Framework
UTC Universal Time Coordinated
VRF Variable Refrigerant Flow
W3C World Wide Web Consortium
WebUI Web User Interface
XACML eXtensible Access Control Markup Language

22/02/2022 -v.2.0 Page 9 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

1 Introduction

1.1 Scope of the document

This document is the second part of a set of deliverables that describes the development and

implementation of the PHOENIX Smartness Hub. This intermediate version includes updates in

the design of the Knowledge Graph that is intended to be used for offering a high-level access to

the data stored in the PHOENIX Smartness Hub.

Updated versions of data analytics services are also included in this document in their path to

provide the information required by services from WP5 and WP6 now that devices are already

operational and real data is available in the PHOENIX Smartness Hub.

Finally, the Security & Privacy framework has received an upgrade mostly in the security part

after having completed and deployed a subset of the security components. The privacy-related

security component (CP-ABE) will be included in D4.3.

1.2 Relevance to other deliverables

This deliverable is related to the rest of the set, namely Deliverables 4.1 and 4.3.

This Deliverable is also connected to D3.2 “Technical upgrades and integration mechanism for

legacy equipment – Intermediate version” as the security features described in the current one

have been introduced in D3.2, an integration-focused Deliverable. In addition, some

dependencies arise regarding the provisioning of entities in the context of actuation based on the

chosen data models.

This deliverable is also relevant to D7.2 “Initial Pilots Deployment, Operation and Validation”.

After having finished the PoC, there is a direct relation between the deployment of the pilots and

the security requirements that must be fulfilled by the IoT gateways, BMS, etc. using the S&P

framework.

1.3 Structure of the document

This document is divided in four main sections including this introduction. Section 2 includes a

more refined version of the basic models defined in D4.1, including SRI, which provide some

higher-level functionalities. Section 3 includes the updated revision of the data analytic services,

separated in two categories, user-centric and grid related. Section 4 includes the updated version

of the S&P framework as well as information about specific details of the current deployment

and integrations from a security point of view.

22/02/2022 -v.2.0 Page 10 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

2 Integrated Data Models, Knowledge Graphs and Automatic

Semantics

2.1 Knowledge Graph

Integrated Data Models and Knowledge Graphs (KGs) provide means to represent and access

heterogeneous data from multiple sources in a unified manner.

As already mentioned in D4.1, unified representation/access does not imply a centralized

approach. PHOENIX approach is a combination of edge and cloud storages, thus offering a

scalable solution. Semantic data representation ensures that data stored at the different locations

can be easily combined and analysed. This section details PHOENIX’s decentralized KG

solution and describes the current status of its use for enabling the different analytics services.

In our project, the edge storages are enabled by a FIWARE Context Broker, while a triplestore is

used as cloud storage solution.

Figure 1 illustrates the current PHOENIX architecture at the PoC site that is also being used for

the other pilot sites.

Figure 1 – Current Architecture (extended from the PoC-only version)

22/02/2022 -v.2.0 Page 11 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

The difference with the previous version (D4.1) is the addition of a triplestore. In the first phase

of the project, we focused on getting the different sensors and their data modelled and published

at the Context Broker. For sensors, we made use of Smart Data Models representations [1],

which are in compliance with FIWARE NGSI version 2 and NGSI-LD specifications, and

therefore suitable for describing data within FIWARE Context Brokers. For representing the

stream of data coming from the sensors, we use concepts from the IoT-Stream ontology [2]

developed within the IoTCrawler project [3] which in turn extends the W3C’s SOSA ontology

[4] to describe sensor observations.

In the current phase of the project, we have extended the data at the Context Broker to include

actuation entities (details below). Moreover, we have added a triplestore for higher level data

representation coming from sensors (via the Context Broker) as well as from other data sources.

A triplestore, or RDF store, is a purpose-built database for the storage and retrieval of triples

through semantic queries. All data represented following the models described in D4.1 can be

directly stored in such triplestores. This combination of semantic edge and cloud storage

constitutes the edge-cloud Knowledge Graph solution, and is the backbone for the development

of multiple analytical engines and services, which are geared towards building occupants and the

grid. Moreover, data generated by the services is also captured and used to enhance the

information at the Knowledge Graph.

For the triplestore we have opted for the Apache Jena Fuseki [5] implementation. Apache Fuseki

is an active, free and open-source RDF triplestore implementation that is part of the Apache Jena

RDF framework. Apache Fuseki is based on the Apache Jena RDF API and implements a

SPARQL endpoint. It provides an implementation of the SPARQL 1.1 specifications: the

SPARQL query language and the SPARQL Update language as well as the SPARQL graph store

protocol. Via the Jena RDF API also OWL reasoning capabilities are available. Fuseki can run

on several different backends and provides a graphical WebUI for administration access and a

query editor.

To support the services being developed in PHOENIX, the Knowledge Graph is being populated

with information coming from relevant sources.

At the edge level the data in the Context Broker has been extended to also include the actuation

entities, as shown in Figure 2.

22/02/2022 -v.2.0 Page 12 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 2 – Actuation model

The actuation data is going to be used mostly by services that need to act on devices with

actuation capabilities, such as thermostats, as part of their normal operation. This is a visual

representation of the extended hierarchy of entities created after D4.1 and D3.1, and a more

detailed explanation of the format of actuation entities is available in the Formats of new types of

entities section of D3.2.

2.2 SRI model

At the cloud level, the current focus is on the SRI service. The SRI service aims to provide

recommendations for buildings’ upgrade based on the current SRI assessment and additional

information about the functionality levels of the different SRI services. For this service, we have

created a semantic model for the relevant SRI concepts, such as domain, impact, services and

functionality levels. The first version of the SRI model was described in D4.1. Since then, the

model has been modified following the updates on the SRI calculation sheet.

Figure 3 shows a conceptual overview of the model.

22/02/2022 -v.2.0 Page 13 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 3 – Conceptual overview of the SRI model

The model is based on the dimensional modelling approach which is the standard approach for

data modelling of (also relational) data warehouses. Specifically, we use the RDF Data Cube

Vocabulary [6] to represent the data cube specifications (DataStructureDefinition (DSD)) as well

as the SRI matrices.

Figure 3 shows the five possible dimensions: Domain/Service, ClimateZone/Country,

BuildingType, KeyCapability/Impact and Level. The Assessment (qb:DataSet) is a logical

anchor for assessment metadata. The model supports custom service catalogues and definition of

the SRI triage process results. In addition the model has been extended to include information

about building’s upgrades that can lead to higher SRI scores (Interventions). The model currently

allows to indicate, for consecutive pairs of services’ functionality levels (e.g., between “H-1a

Level 1” and “H-1a Level 2”), whether a software of a hardware intervention is required to move

from the lowest to the highest level. For example, the SRI service H-2a “Heat generator control

(all except heatpumps)” has the Level 0 functionality “Constant temperature control”. Via a

software intervention using external weather information, a building could be upgraded to Level

1 “Variable temperature control depending on outdoor temperature”.

FunctionalThing Domain

Service

SpatialThingClimateZone

Country

Level

ServiceLevel

BuildingBuildingType

ImpactThing

Impact

KeyCapability

function

level

type

inCountry
ServiceCatalogue hasService

DSD:assessment DSD:scores
score:float

DSD:weights
weight:float

SRI Class
and QB

Dimension
SRI ClassDSD

QB Class

Assessment

qb:structure
hasBuilding

hasTriage

hasServiceCatalogue

Triage mandatory

Intervention

toServiceLevel fromServiceLevel

Abstract
QB

Dimension
hasPartsubClassOfhasDimension

22/02/2022 -v.2.0 Page 14 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

This can be represented in our model as:

[] a srii:Intervention ;
 srii:fromServiceLevel sri:h2alevel0 ;
 srii:toServiceLevel sri:h2alevel1 ;
 srii:hasInterventionType srii:software .

sri:h2alevel0 a sri:ServiceLevel ;
 rdfs:comment "Constant temperature control" ;
 sri:function sri:h2a ;
 sri:level sri:level0 .

sri:h2alevel1 a sri:ServiceLevel ;
 rdfs:comment "Variable temperature control depending on outdoor temperature" ;
 sri:function sri:h2a ;
 sri:level sri:level1 .

To populate the KG with SRI information we automatically map the SRI assessments to our SRI

model. The SRI data is then stored in the triplestore and linked to other available building

information (the building model if available). Our model is intended to be integrated with other

existing building models such as SAREF’s extension for building domain [8] and BRICK [9]. To

that end we have defined a “Building” class which has equivalent classes in both aforementioned

models.

22/02/2022 -v.2.0 Page 15 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

2.3 Energy flexibility data uses a subset of SAREF

The extension of SAREF specification, called SAREF4ENER, has been used in PHOENIX to

model the data related to demand response events in the context of flexibility management.

SAREF4ENER aims to enable interoperability between solutions from different owners in the

smart home domain with an extensive ontology focused on the demand response event scenario.

In particular, the flexibility services offered by PHOENIX are aligned with the scenario

envisaged by SAREF4ENER in which devices react to a given flexibility requests with the aim

of reducing load consumption by modifying their usage pattern.

Once the flexibility is agreed between the aggregator and PHOENIX, the demand response

events to be performed on the devices involved have to be defined.

SAREF4ENER proposes a way to model these demand response events, as Direct Load Control

(DLC).

Specifically, SAREF4ENER defines a series of classes that allow this scenario to be modelled:

• LoadControlEventData: used to represent information about the event on a device,

indicating the period of actuation and the specific device controlled.

• LoadControlEventAction: represents the type of control that is performed on the device,

indicating whether it is a pause, reduction or increase in consumption. The list of control

types is as follows: emergency, increase, normal, pause, reduce, resume. Is associated to

LoadControlEventData.

• LoadControlStateData: models the information regarding the status of the demand

response event. It is associated to LoadControlEventAction.

• LoadControlEventState: is a class associated to LoadControlStateData that represents the

possible states of the demand response event. The possible status values are:

eventAccepted, eventStarted, eventStopped, eventRejected, eventCancelled, or

eventError.

In addition, some classes related to the next step, the evaluation of flexibility results, are being

modelled for integration into PHOENIX with a dedicated entity that will be created ad hoc for

this project.

22/02/2022 -v.2.0 Page 16 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

2.4 Automatic Semantics

One of the goals of the project is to help seamless (Adapt & Play) integration of devices. This is

already in practice in the project, by means of reusing data models and exploring context brokers

for registering devices and their data. In the next phase of the work, we will explore the data

collected by the framework to further support devices’ registration.

To that end we are creating “data profiles” that characterise different types of devices (e.g.,

indoor temperature, humidity, energy consumption, etc.). The data profiles are obtained

following a time-series analysis of the data provided by the devices, with the purpose of

providing compact, yet meaningful information about the devices. Data profiles will be added to

the PHOENIX’ KG, thus enhancing the knowledge base on buildings. A direct use of the

extended KG will be to support automatic semantic labelling of devices. For the automatic

semantic labelling, we will explore similarities among the data profiles to suggest semantic

annotations when registering a device to the platform, based on the data coming from that

device. By suggestion semantic labels, the PHOENIX platform not only ease the registration

process for the users, but it also fosters model reuse, which consequently decreases the data

integration efforts. The outcome of this work will be described in the final deliverable for WP4.

22/02/2022 -v.2.0 Page 17 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

3 Data analytics services

3.1 Data analytics for user-centric services

3.1.1 Occupancy nowcasting and forecasting for building occupants

The nowcasting occupancy prediction, as well as its short-term prediction (between 15 minutes

and 3 hours ahead), are of crucial importance for the best interaction of the building occupant

with his surroundings and the preservation of his comfort. More specifically when the

PHOENIX system needs to make decisions on how to act on some devices e.g., lights, it needs to

be aware of the user presence because the automatic turning off of lights could disrupt the user if

of course the room is occupied.

For this purpose, we have developed a 3-step algorithm that is described as follows:

Initially, we have the unsupervised clustering phase triggered by a scheduled cron job once per

week. In this phase, a 2-week historic dataset regarding temperature, relative humidity, CO2 and

luminance measurements is considered, per zone (only the residential zones are taken into

consideration, e.g., parking is excluded). These historic data are stored in our local Elastic Search

instance and are enriched each day from the historic sync cron job between the Historical Data

component and Elastic that runs every night at 03:00 UTC.

Before transforming the data into a useful Pandas dataframe for our clustering algorithm, some

pre-processing steps are required such as reindexing, matching the timestamps, handling missing

values, accounting for holidays, splitting weekdays and weekends, standardization and

dimensionality reduction.

Then Kmeans clustering is then invoked and tries to give the labels occupied and non-occupied

to the input dataset. So, the resulting dataset is now labelled, and the problem has been

transformed to a supervised one. Note here that the dbscan method has also been tested but with

not as good results as the ones of the Kmeans.

At the second phase, the supervised one, the Random Forest Classifier (RFC) is invoked. The

input dataset (from the previous clustering phase) is split into a training (70% of the total) and a

test set (30% of the total). The classifier is trained on the 70% and tested on the remaining 30%

where the corresponding accuracy and recall are calculated.

22/02/2022 -v.2.0 Page 18 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

This resulting occupancy model is stored in Elastic Search in the following document form:
occup_model = {

 "model": gANjc2tsZWFybi5lbnNlbWJsZS5fZm9yZXN0ClJhbmRvbUZvcmVzdENsYXNzaWZpZXIKcQ……,

 "trained_at": date,

 "features_used": light, temperature, relativeHumidity, co2

 "accuracy_score": 98.68,

 "recall_score": 97.17,

 "missing_timeseries_perc": 8.85

 }

The field “model” represents a base64 binary form of the trained model and the field

“missing_timeseries_perc” is the % percentage of missing values in the dataset. The accuracy

range is between [98.68 - 99.5] and the recall range lies between [97.17 – 100].

At the third phase, the predict phase, the RFC is called again to predict the occupancy state per

residential zone only for the latest time frame. The latest time frame is considered as valid if the

given timestamp of a measurement falls within an accepted time range of the last 30 minutes.

This compromise is because there is usually a delay in the retrieval of measurements from the

Orion Broker and because not all sensors are synchronized to produce measurements at the same

timestamp. If this time frame is considered valid, then a new dataframe is constructed with the

latest values of the features used (light, temperature, relativeHumidity, co2).

The new dataframe is fed to the RFC, the predicted label Occupied or Non-occupied is returned

as a result from the RFC and the corresponding value is also shown in the Building Occupant

Dashboard along with the zone id.

For the short-term (15 minutes – 3 hours ahead) occupancy prediction, another approach has

been selected. Two prediction requests to the Algorithms Engine are made, regarding the zone

energy consumption and the zone CO2 level and the execution results are made available in the

Orion Broker as two different entities. We need both entities because there are some zones where

Energy Power Meters are available, but CO2 meters are not, and vice versa, so the algorithm

chooses according to the meter availability.

The occupancy labels that derived from the previously described clustering phase can be used as

historic labels of a training dataset that will be used for training an HMM model. In HMM, a

sequence is modelled as an output of a discrete stochastic process [7], which progresses through

a series of states that are ‘hidden’ from the observer and is widely used in problems of estimating

occupancy.

22/02/2022 -v.2.0 Page 19 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

In more detail, for each occupancy state, the state of distributions is calculated. Then the

transition matrix for the Hidden Markov Model is generated according to the following form:
prob(STATE_0 -> STATE_0), probability for the zone to remain empty

prob(STATE_0 -> STATE_1)], probability for the zone to get occupied

prob(STATE_1 -> STATE_0), probability for the zone to get empty

prob(STATE_1 -> STATE_1), probability for the zone to remain occupied

In the next step, the occupancy predictor algorithm calculates the starting state probabilities for

the occupied and not occupied state. The HMM model is then trained and fitted using Baum-

Welch algorithm taking into account all previous information. The test set (predicted

consumption or CO2 level) is used to derive the prediction of next occupancy states using the

Viterbi algorithm.

3.1.2 Default Comfort calculation for building occupants

Another crucial aspect of the automated control actions that will improve the thermal, visual and

air quality comfort of the building occupant is the knowledge of the users’ default comfort

profiles as well as their relevant short-term predictions. Here we will explain the default user

comfort profile and in D4.3 we will account for the short-term predictions.

Initially the algorithm needs some configurable metrics as input such as the thermal vector range,

the visual vector range, the air vector range and the humidity vector range as well as their

respective vector steps (these are taken from literature). This can easily be explained with the

example of a thermal vector of Tmin = 20 and Tmax = 30 with a time step dt = 1.

Then the algorithm considering a specified building zone, links the respective vector to the

associated sensors of the zone and collects their values. If the sensor values cannot be retrieved

or if the timestamp validation fails (like we previously explained for the occupancy algorithm), a

corresponding error message is returned in the internal application and the frontend part

demonstrates a N/A to the user at the specified metric.

If there are sensor data available at the time of the request, the calculation of a user's default

comfort based on their survey responses is triggered. We remind here that upon a user’s first

login, he is being redirected to fill in a survey.

22/02/2022 -v.2.0 Page 20 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

A part of it corresponds to preferences regarding internal temperature, lighting and humidity, and

is shown in the next example:

"I feel comfortable in very warm places",

 "I feel comfortable in warm places",

 "I feel comfortable in a bit colder places",

"I feel comfortable in very bright places",

 "I feel comfortable in bright places",

 "I feel comfortable in places with normal brightness",

 "I feel comfortable in darker places",

"I feel comfortable when the air in my home is dry",

 "I feel comfortable when the air in my home is moist ",

 "I feel comfortable when the air in my home is neither too dry nor too moist"

These answers are being translated into vector values when appropriate mappings are made in

the algorithm taking into account the vector’s min and max limits and the respective time step.

So, as a result in each vector a sub-area that denotes comfort is determined.

Then a comparison is made with the real-time sensor values and if the value lies in the

previously specified comfort area, then for this calculation time step the user is being identified

as comfortable, else uncomfortable. For the non-residential zones, comfort is not calculated.

3.1.3 Descriptive analytics for the delivery of basic metrics

Following the requirements of D2.1 the following metrics have been calculated and made

available in the building occupant dashboard:

Table 1 – Calculations per KPI

Metric

number

Metric name Calculation

M_1 Real Time Average Room

Temperature (Celsius)

Average sensor measurements (if multiple sensors

are present) per building zone for each time step

M_2 Real Time Average

Relative Humidity (%)

Average sensor measurements (if multiple sensors

are present) per building zone for each time step

M_3 Real Time Average CO2

level (ppm)

Average sensor measurements (if multiple sensors

are present) per building zone for each time step

M_4 Real Time Average Average sensor measurements (if multiple sensors

22/02/2022 -v.2.0 Page 21 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Luminance level (lux) are present) per building zone for each time step

M_5 Average Room

Temperature (Celsius)

Average value for the last 15 days per building

zone

M_6 Average CO2 level (ppm) Average value for the last 15 days per building

zone

M_7 Average Luminance level

(lux)

Average value for the last 15 days per building

zone

M_8 Real Time Thermal

Comfort Status

Identification of comfort status or not per building

zone for each time step

M_9 Real Time Air Quality

Comfort Status

Identification of comfort status or not per building

zone for each time step

M_10 Real Time Visual Comfort

Status

Identification of comfort status or not per building

zone for each time step

M_11 Real Time Occupancy

Status

Identification of occupied status or not per

building zone for each time step

In the final version of PHOENIX Smartness Hub implementation (D4.3) the full list of

descriptive KPIs will be made available in the dashboard both for the building occupants as well

as the building managers. Another improvement that can be made for the near real time

measurements is the possible subscription of the dashboard to the Context Broker so as to

minimize the amount of GET requests per user click in every sensor update.

3.2 Data analytics for grid integration services

Grid-oriented services are a fundamental part of PHOENIX, thus requiring intelligent interaction

with the different grid agents (e.g. aggregator). To perform these services, the development of

algorithms and data analysis is necessary. This section details the implemented algorithms and

their connection to the PHOENIX architecture in terms of interaction with the grid.

3.2.1 Context of algorithms for grid integration

The interaction between PHOENIX and the grid is a fundamental part of the project. For this, it

is essential to use and develop algorithms and analytics techniques that allow PHOENIX to

behave intelligently with the grid. A key issue in grid-oriented services is Demand Response

Events.

22/02/2022 -v.2.0 Page 22 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Demand response events are performed by the Flexibility Engine. First, Flexibility Engine is in

charge of the negotiation between PHOENIX and the aggregator, a step in which the feasibility

of the required flexibility is evaluated by examining the energy availability of each of the devices

that may be involved in the flexibility operation. Aggregator requests PHOENIX about a

decrease of the load on its connection points for a specific period and PHOENIX offers different

flexibility offers after the evaluation of the available energy on its appliances including the

demand response events to be performed. Finally, the aggregator accepts one of the offers and

instructs the Flexibility Engine to initiate the negotiated demand response events for the specific

period, to achieve the agreed flexibility.

Data analytics techniques play an important role in the first phase of flexibility negotiation,

which is responsible for assessing the feasibility of the required flexibility. For this purpose, the

Flexibility Engine establishes a communication with the Algorithms Engine, which will require

the resolution of different analytics techniques to make an estimation of the available flexibility

that can be offered to the aggregator.

Figure 4 – Architecture and components for flexibility

Figure 4 shows the architecture designed to implement the flexibility services by the Flexibility

Engine. This includes the connection with the rest of the PHOENIX components such as Context

Broker, Algorithms Engine or USEF interpreter that are essential to perform the demand

response events. The creation of the Algorithms Engine allows decoupling the execution of data

analysis algorithms from the consumer, offering a more scalable architecture since many services

require the execution of these algorithms, which are indispensable for their tasks. In this case, the

consumer is the Flexibility Engine.

22/02/2022 -v.2.0 Page 23 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 5 shows the communication flow to perform an execution of an algorithm in the

Algorithm Engine. This is done by creating dedicated entities which detail the request for the

algorithm to be executed together with the data streams and some required parameters.

Figure 5 – Communication flow with Algorithms Engine

The algorithm engine, previously subscribed to these request entities, receives a notification of

the new algorithm request to be executed. It then performs the execution of the required

algorithm and stores the results in the Context Broker. Finally, the consumer/service (e.g.,

Flexibility Engine) can consult the results in the Context Broker to continue with its tasks.

3.2.2 Algorithms for forecasting, now-casting and benchmarking

For the design and evaluation of flexibility it is necessary to use data analysis to estimate the

amount of energy that will be consumed by the devices and the load profile based on the

timestamps during the period in which flexibility is requested. These algorithms could be

configured for different time scales.

For this purpose, a time series forecasting algorithm has been developed, whose execution is

requested by the Flexibility Engine to estimate the load profile of each of the devices that may be

involved in demand response events. This process consists of analysing time series energy

consumption data from previous periods and predicting the load profile for the flexibility period.

This analysis allows to know both the estimated energy load and the operating period of the

device.

Finally, a multivariate generic forecasting algorithm has been developed for forecasting

considering external data from official sources such as REE, the API of the Spanish electricity

operator. Some parts of algorithm development code are contained in Annex I, including also the

code related to the extraction of stream data from the Context Broker and, after the execution of

the algorithm, the storage of the results in the dedicated entity in the Context Broker.

22/02/2022 -v.2.0 Page 24 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

This algorithm supports the inclusion of additional data such as electricity price or current

energy generation, thus being able to offer smarter flexibility offers by increasing their feasibility

and adding monetary information. For example, Figure 6 shows the forecast of hydro generation

for the first 4 months of the year 2021, after analysing the data of the previous full year.

Figure 6 – Hydropower generation forecast

3.2.3 Algorithms set for optimal operations for grid integration services

One of the necessary functionalities of PHOENIX, specifically on the actions towards grid

integration, is the capability of modifying the demand. On our preliminary approach this took the

form of re-scheduling devices on an optimal way. Hence, one of the algorithms developed was

an optimisation algorithm that reschedules the operation of devices in intervals of 15 minutes

representing the ISPs.

The so-called shiftable devices allow planning a re-schedule that can lead to a consistent

reduction of the power peaks, creating a more distributed curve of power usage. The re-

scheduling could be hard to accept from an end-user’s point of view since the occupants’ habits

need to be changed. In order to increase the occupants’ acceptance of this change, one of the

variables of the optimisation problem will be maintaining this shifting in time as little as

possible.

Table 2 – Types of devices based on their shifting capabilities

 Shiftable devices Controllable devices Non-shiftable

Description

Their entire operation can

be moved to another time

Their operation can be

modified so they use less

power without moving it

to another time

Their operation neither

can be moved to another

time nor it can be reduced

Example EV charging HVAC (thermostat) Computer /TV

22/02/2022 -v.2.0 Page 25 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Considering the preferences of a given PHOENIX user, we can consider that we are facing a

multi-objective optimisation problem, defined by three objective functions: (1) minimisation of

the maximum power peak (desired by the utility), (2) minimisation of the overall cost per user

(desired by the user), and (3) minimisation of the distortion to the user (desired for the user).

Maximum peak power, cost and distortion are calculated through the solutions vectors as

follows:

1. Peak(T’, t) = max(Power(T’,t)) / n

2. Cost(T’,t) = sum(Power(T’,t) . C(t))

3. Distortion(T’) = sum(|T – T’|) / n

Where n is the number of consumers, C is the price of power over a day, T and T’ are the power-

on timestamps, respectively referring to before the optimisation and after it. Hence, T-T’ is the

variation of the starting time of use of the appliances.

To solve this kind of optimisation problem in machine learning, a widely used solution is

recurring to a search-based algorithm called genetic algorithm. In this way, it is possible to

obtain a set of points that solve each objective without being conflictive for the others. These

points will form the so-called Pareto front, which represents the solution to the multi-objective

optimisation problem. Those solutions can be later sent to the Flexibility Engine, so the right

actuation orders can be sent to the devices.

To help visualising how the method described can be applied, an example of how to set the

optimisation problem is presented in this subsection. First of all, it is necessary to define the

agents of the problem. In this case, realistic user profiles can be used, in order to obtain the

appliance data to construct the appliance timestamp vector (consumption sources). Then, the

decision space has to be set, that is the range of choice. In this case, the decision space is defined

by the number of homes, multiplied by the variation in time of the appliances power-on. This

displacement can fluctuate in an interval of +/- 24 hours, i.e. the action can be moved to any hour

of the day. The algorithm used for the multi-objective optimisation is defined by setting its

parameters. In this case, a possible solution is given by the NSGA II algorithm that uses the

mechanics of natural selection: similarly, to the theory of biological evolution, individuals face a

‘survival selection’, based on crowding distance. Hence, the algorithm will test and evaluate

modification to the timestamp T (the one chosen by the user before the optimisation) in search

for the minimum values for the three functions described in the previous subsection. The results

are improved by iterating the process until, at the end of the execution, the Pareto front of the

optimised solutions is obtained as a set of 3-dimensional vectors.

22/02/2022 -v.2.0 Page 26 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Parameters can be assigned as follows:

Table 3 – Description of the algorithm used for the multi-objective optimisation

Library of the algorithm pymoo.algorithms.moo.nsga2

Crossover mechanism integer simulated binary crossover

Mutation Mechanism integer probability mutation

Crossover parameter 0.9

Mutation parameter 0.01

Population size 300

Termination criteria tolerance

Termination criteria parameter 0.05

The proposed multi-objective optimisation algorithm for shiftable loads is used by the Flexibility

Engine. Some parts of optimisation algorithm development code are contained in Appendix A.

When the Flexibility Engine receives a flexibility request from the grid, which indicates a power

peak for a specific period, it starts the task of processing this flexibility request in which it

evaluates the feasibility of the request. To do so, it makes use of the proposed optimisation

algorithm to decrease the load in a specific period by re-scheduling the shiftable devices to

smooth power peaks while minimising the cost of electricity and the distortion of the operating

time of the devices involved. The results obtained lead to the design of demand response events

to solve these power peaks.

3.2.4 Investigation of pilot's real data for algorithms testing

Strategies and tools described in the previous sections will be applied to the offices that form

part of the UMU pilot. The next step of the trial will be planning a flexibility strategy for the

next months, starting from February 2022. The data analytics needed for this aim mainly concern

the schedules of use of the HVAC system and the setpoint temperature chosen. The analysis is

based on the period with an active heating system, i.e. months from November to February are

considered. Real historical data have been analysed and a qualitative summary is presented in

this section. Searching for a pattern of use, three different years have been compared. In

particular, we used data from winter 2018/2019 and winter 2019/2020, while data from winter

2020/2021 were useless since the offices were not used due to the pandemic.

22/02/2022 -v.2.0 Page 27 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

The raw data are obtained from the Context Broker, and they are referring to the terminal units

of the HVAC system of the four main offices that compose the UMU pilot (namely, Office 14,

Office 15, Office 16 and Office 17). In particular, the terminal units are Toshiba VRF and the

data is collected from the internal drive of each terminal. The granularity of the raw data is 10

minutes. The data has been filtered in order to consider only the timesteps in which the devices

were turned on.

For each office and each month, Table 4 summarises:

• the number of timesteps considered (timesteps in which the HVAC is turned on)

• the mean value

• the maximum value

• the minimum value

• the standard deviation

Table 4 – Analysis of the setpoint temperature set for the four main offices of the UMU pilot

Office Month Year
Mean setpoint
Temperature

(ON)

Max setpoint
Temperature

(ON)

Min setpoint
Temperature

(ON)
Count STD

14 11 2018 25.13 29 23 538 2.76
14 11 2019 24.87 29 0 146 6.11
14 11 2021 26.24 29 23 479 2.27
14 12 2018 24.05 26 23 382 0.98
14 12 2019 26.65 29 22 353 1.58
14 12 2021 25.00 25 25 5 0.00
14 1 2019 24.91 26 22 708 1.05
14 1 2020 24.77 29 24 803 1.12
14 1 2022 24.77 26 23 378 0.73
14 2 2019 22.61 24 22 1395 0.92
14 2 2020 24.49 266 23 504 1.06
15 11 2018 24.70 25 22 10 0.95
15 11 2019 22.53 24 22 386 0.51
15 11 2021 22.26 24 22 809 0.49
15 12 2018 22.00 22 22 163 0.00
15 12 2019 NaN NaN NaN 0 NaN
15 12 2021 22.36 23 22 604 0.48
15 1 2019 22.00 22 22 784 0.00
15 1 2020 22.78 23 22 658 0.41
15 1 2022 22.80 23 22 282 0.40
15 2 2019 22.00 22 22 560 0.00
15 2 2020 22.32 24 22 326 0.56
16 11 2018 24.30 28 22 108 1.79
16 11 2019 22.85 24 21 142 0.62
16 11 2021 22.80 27 22 56 1.12

22/02/2022 -v.2.0 Page 28 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

16 12 2018 23.39 25 22 558 0.73
16 12 2019 23.38 27 23 427 1.02
16 12 2021 24.39 25 23 66 0.93
16 1 2019 23.30 25 22 983 0.92
16 1 2020 24.77 28 24 274 0.73
16 1 2022 22.53 23 22 347 0.50
16 2 2019 23.65 25 23 478 0.80
16 2 2020 23.51 25 22 149 1.49
17 11 2018 23.72 25 21 586 1.01
17 11 2019 22.02 26 22 198 0.28
17 11 2021 23.11 26 21 1118 1.43
17 12 2018 21.65 23 21 861 0.67
17 12 2019 NaN NaN NaN 0 NaN
17 12 2021 23.96 25 23 880 0.56
17 1 2019 22.34 24 21 1485 1.05
17 1 2020 23.46 24 23 982 0.50
17 1 2022 25.04 28 25 918 0.34
17 2 2019 21.74 23 21 1278 0.88
17 2 2020 22.78 24 21 415 0.68

With respect to the analysis of the schedule, the time series of the three working weeks of

January (one week is excluded due to holidays) are depicted in figures from Figure 7 to Figure

10, and it can be observed that in some cases it is not easy to find a pattern of use.

Trying to summarise, the schedules can be set to:

• Office 14: from 9:00 to 16:00

• Office 15: from 8:30 to 15:00

• Office 16: from 8:30 to 18:00

• Office 17: from 8:30 to 18:30

Figure 7 – Time series of the HVAC use (ON/OFF representation) (Office 14)

22/02/2022 -v.2.0 Page 29 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 8 – Time series of the HVAC use (ON/OFF representation) (Office 15)

Figure 9 – Time series of the HVAC use (ON/OFF representation) (Office 16)

Figure 10 – Time series of the HVAC use (ON/OFF representation) (Office 17)

22/02/2022 -v.2.0 Page 30 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

In the context of the pilot, a forecasting of the internal temperature of several rooms measured by

the HVAC has been performed. Figure 11 shows the result of a forecasting algorithm performed

in one of the rooms, using data from the full year 2021 to estimate the temperature in the first

four months of 2022. This data brings great value to the design of Demand Response Events as it

allows a more accurate assessment of HVAC control during a DRE, optimising the energy

consumption and reducing the power peaks.

Figure 11 – Forecasting of room temperature measured by HVAC

4 Privacy and Security

4.1 Overview

At this point of the project, an amount of efforts have been made on offering mechanisms that

cover the security requirements of the PHOENIX solution.

As stated in D4.1, the S&P framework will deal with both security and privacy, and so far the

work done in the context of this deliverable has been mostly focused on security in order to

guarantee that the integration of devices from pilots is fully operational for both reading and

actuation.

4.2 Risk analysis associated to privacy/security features

This section describes what has been done in order to deal with the risks identified in D4.1 in the

context of privacy and security.

4.2.1 Non-functional risks

The next table shows an updated version of the same table coming from D4.1 that includes the

implemented solution to deal with each non-functional risk identified.

22/02/2022 -v.2.0 Page 31 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table 5 – Non-functional risks in PHOENIX

ID Name/Description + Solution implemented Priority

NF_RI_1

Accessibility – S&P framework will provide the data access according

to security and privacy policies.
HIGH

The data is available as long as the Service/Device fulfils the security

requirements.

NF_RI_2

Availability – S&P framework will be available 24/7.

HIGH

The security components are deployed as docker containers, are

configured to be started automatically in case of server reset and are

monitored to guarantee the containers are operational. If they’re not,

they are reset.

NF_RI_3

Backup – S&P will include back-up procedures for storage facilities

of all relevant data (e.g. security and privacy configurations, sensing

data, etc.).
MEDIUM

A backup copy of the security and privacy configurations is done

every time there is a change using GitLab. Other than that, the backup

mechanism is executed at a server level.

NF_RI_4

Capacity – S&P framework will manage a minimal group of <N>

devices (to be defined at pilot level).

HIGH
This capacity has yet to be identified as some virtual devices (with

their own entities in the Context Broker) are still being created related

to the internal operation of some services. However the framework is

managing all the devices developed in all the pilots.

NF_RI_5

Privacy – S&P framework will provide privacy-preserving techniques

to be compliant with the GDPR data protection regulation.

HIGH The framework definition ensures that only those who have the right

credentials are allowed to access to the stored data in its original

deciphered version based on the policies used by the producer

NF_RI_6

Security – S&P framework will include security-by-design

mechanisms (i.e. authentication, authorization, channel protection,

etc.) to ensure data access for the allowed entities (i.e. devices and

services) according to security policies.

HIGH

This is guaranteed per-design by the security components’ ecosystem

22/02/2022 -v.2.0 Page 32 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

and by the use of secure (https) connections with automatic renovation

of certificates.

NF_RI_7

Configurability – S&P framework will provide mechanisms to

configure security policies, privacy policies, entities, attributes, etc. HIGH

A configuration interface is available through the PAP.

NF_RI_8

Effectiveness – S&P framework will be able to provide secure, private

and trust exchanging of sensing/actuation data among different entities

(i.e. devices and services). HIGH

The data can only be modified if the right policies owned by the

corresponding user, service or device.

NF_RI_9

Extensibility – S&P framework will be a modular system enabling to

include new features and customizations.
HIGH

The framework itself is designed to be deployed in a fully distributed

scenario.

NF_RI_10

Interoperability – S&P framework will include standards of

Application Programming Interfaces (API) to facilitate the exchange

with other entities (i.e. devices and services). HIGH

API documentation is provided to allow integration with devices and

services.

NF_RI_11

Performance – S&P framework will provide a good response time to

interact with other entities in real time. HIGH

All the components of the framework respond in real time.

NF_RI_12

Scalability – S&P framework will be able to guarantee the

communication with a high number of devices and services.
HIGH

The framework has been tested to handle requests from all the devices

and services that are already operational

NF_RI_13

Reporting – S&P framework will maintain a log of the operations

performed. LOW

The components do have an internal logging system

4.2.2 Functional risks

In this case, the next table shows an updated version of the table related to the functional risks

coming from D4.1 and also includes the implemented solution to deal with each risk identified.

22/02/2022 -v.2.0 Page 33 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table 6 – Functional risks in PHOENIX.

ID Name/Description + Solution offered Priority

F_RI_1

S&P framework will include operations to enable management (i.e.

creation, modification and deleting) of security/privacy policies by the

system administrator.
HIGH

The management of policies is available using the PAP interface.

F_RI_2

S&P framework will include operations to manage the identity and

attributes of the involved entities (i.e. devices and services). HIGH

These attributes can be managed using the Keyrock interface.

F_RI_3

S&P framework will include storage for real-time sensing/actuation

data.
HIGH

The real-time data is stored in the core components of the Smartness

Hub.

F_RI_4
S&P framework will provide storage for security/privacy policies.

HIGH
The framework stores the policies in a persistent storage.

F_RI_5

S&P framework will include operations to check security/privacy

policies when data is requested by any entity.
HIGH

The policies are validated in a distributed way every time a request to

access any entity is received.

F_RI_6

S&P framework will support context-aware access policies.

HIGH A context can be defined inside the framework based on a set of

attributes of users and services.

F_RI_7

S&P framework will provide capabilities to control the access of data

according to the defined security and privacy policies.
HIGH

Each Capability Token includes the set of capabilities that indicate

which operation can be executed on the related resources/entities.

F_RI_8

S&P framework will guarantee that security/privacy policies are not

accessible publicly. HIGH

The policies can only be accessed using the administration interface.

F_RI_9

S&P framework will incorporate standardized interfaces to

communicate with third-parties entities (i.e. devices and services).
HIGH

The framework provides an open API to use them and offers an

endpoint for devices and services to access the data.

22/02/2022 -v.2.0 Page 34 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

F_RI_10

S&P framework will support the authentication of the devices and

services before allowing the access to any data.
HIGH

The data can’t be accessed unless the device or service is correctly

authenticated (Identity Manager).

F_RI_11

S&P framework will support the authorization of the devices and

services before allowing the access to any data.
HIGH

Devices and services must be authorized to access the data (Capability

Token + PEP Proxy)

F_RI_12

S&P framework will provide channel protection (i.e. confidentiality,

integrity and availability) to communicate with third-parties entities

(i.e. devices and services).
HIGH

The data is always exchanged using secure channels (https) and the

components are monitored to guarantee that they are restarted if a

malfunction is detected at some point.

F_RI_13

S&P framework will include the encryption of sensors/actuation data

by public-key cryptography techniques.

HIGH The data will be stored directly encrypted when CP-ABE is being used

once its development is finished (privacy component, not included in

this deliverable).

4.3 Security Components

This section shows how the security components have been integrated in the PHOENIX project.

The implemented technologies that will be detailed along the section are:

• Keyrock (FIWARE GE) for Identity Management (IDM) and authentication purposes.

• Distributed Capability-Based Access Control (DCapBAC) for authorisation purposes

(access control).

The security components can be deployed using either Docker or Kubernetes technologies. In the

PHOENIX Project, Docker has been selected. The containers can be launched both in the same

environment as the rest of the PHOENIX components or out of it due to their distributed nature.

The next subsections will detail the following aspects related to the security components:

• Definition of the global architecture.

• Description of the main aspects (API, configuration requirements, etc.) of each

component.

22/02/2022 -v.2.0 Page 35 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

• Explanation of the interactions between the components and how to access a resource

using the S&P framework.

• Details of the deployment of some components in the Smartness Hub.

4.3.1 Architecture

This section shows a global view of the security architecture and how it is connected with the

PHOENIX components that make use of it, i.e. the Context Broker, the Z-Wace/WMP Actuation

Agent and the Historical Data component.

Figure 12 – Security components / Architecture

As shown in Figure 12, the security components are in front of the PHOENIX core components,

which means the resources offered by them must be accessed through the security layer. From a

security perspective, they offer both authentication and authorisation.

The component in charge of the authentication part is Keyrock (FIWARE Generic Enabler)

while for authorisation, the Distributed Capability-Based Access Control technology

(DCapBAC) is the one in control. DCapBAC itself includes a set of components, namely the

XACML-Framework, Capability Manager and PEP Proxy.

Three requests will be required to get access to any resource, one for the authentication phase

(Keyrock) and two for the authorisation access control phase (the authorisation request itself and

the access to the resource). Any Service/Device must be authenticated (first request) before

requesting authorisation (second request) and accessing the requested resource (third request).

22/02/2022 -v.2.0 Page 36 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

4.3.2 Components

4.3.2.1 Keyrock

Keyrock (FIWARE GE Keyrock: https://fiware-idm.readthedocs.io/en/latest/index.html) is

responsible for the Identity Management. It implements an OAuth2 REST API for managing

identities in its repository as well as for authentication purposes. Further information can be

found in the Keyrock Apiary (https://keyrock.docs.apiary.io).

This component allows creating users, organizations, applications, roles, assigning the users to

organizations or application roles, etc. The Keyrock information is one of the pieces that the

XACML framework uses to define access-control policies because the XACML policies are

related to the entities defined by Keyrock (subject concept in the policy).

Keyrock entities can be managed not only through the OAuth2 REST API, but also using a web

frontend.

Figure 13 shows the section of the Keyrock frontend with the list of the existing users.

Figure 13 – Keyrock / User list

22/02/2022 -v.2.0 Page 37 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Once a Service/Device of PHOENIX is registered as a user in Keyrock, it can send an

authentication request with the following format.
POST https://phoenix.odins.es:5443/v1/auth/tokens

Content-Type: application/json

{

 "name": "userEmail",

 "password": "userPassword"

}

The json payload includes two properties:

• name: the email of the registered user is used as identifier. For instance:

LTU_pilot@phoenix.org

• password: the corresponding password.

In the response, if the credentials are wrong, a 401–"Unauthorized" code response will be sent.

Otherwise, if the authentication is successful, a 201-"Created" code response will be returned

and an IdM-Keyrock authentication token will be received in the X-Subject-Token http header

of the response.

The following boxes show the formats of the different responses.
RESPONSE: HTTPS/1.1 201 Created

X-Subject-Token: 35ecf5d5-f9f5-417f-abe7-dc91cc13262f

{

 "token": {

 "methods": [

 "password"

],

 "expires_at": "2022-02-13T12:02:17.676Z"

 },

 "idm_authorization_config": {

 "level": "basic",

 "authzforce": false

 }

}

RESPONSE: HTTPS/1.1 401 Unauthorized

{

 "error": {

 "message": "Invalid email or password",

 "code": 401,

 "title": "Unauthorized"

 }

}

22/02/2022 -v.2.0 Page 38 of 62

https://phoenix.odins.es:5443/v1/auth/tokens
mailto:LTU_pilot@phoenix.org

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

4.3.2.2 XACML/PDP + PAP

The XACML framework includes:

• The Policies file witch stores the XACML policies defined in the system.
• The Policy Administration Point (PAP), which allows the management of the XACML

authorisation policies and can be accessed through a web frontend. These XACML
policies are defined by a triplet (subject, resource, action). The PAP stores them in the
XACML policies file. In this sense, this element is a configuration-only component and
therefore doesn't interfere in the authorisation process.

• The Policy Decision Point (PDP), responsible for matching the authorisation requests
with the XACML policies defined by the PAP, and issuing positive/negative verdicts
accordingly.

Figure 14 illustrates the Main view of the PAP frontend.

Figure 14 – PAP / Main view

The list of attributes required to create the XACML policies is available in the section Manage
Attributes of the interface. These attributes must be previously defined in Keyrock.

Figure 15 shows the current attributes defined in the project.

22/02/2022 -v.2.0 Page 39 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 15 – PAP / Management of Attributes

Once the attributes have been defined and saved, and having gone again to the Main view, the

policies can be managed in the Manage Policies section.

Figure 16 shows the current set of policies.

Figure 16 – PAP / Management of Policies

In this page Policies must be created first (top left) and then one or more rules can be created for
each policy (left). Each rule can link resources, actions and subjects and establish whether this
combination is Permit or Deny (bottom right).

Figure 16 shows an example of XACML policy defined where some users (Subjects) are allowed
(Rule=Permit) to send GET requests (Actions) to some endpoints of the API of Context Broker
(Resources).

22/02/2022 -v.2.0 Page 40 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Regarding the PDP, it offers an endpoint that returns the verdict to an authorisation request. It
will try to match the request with the XACML policies to issue the verdict. The authorisation
request follows this format:

POST http://phoenix.odins.es:8080/XACMLServletPDP/

Content-Type: text/plain

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

 <Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">

 <Attribute AttributeId=subjectType DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>subject</AttributeValue>

 </Attribute>

 </Subject>

 <Resource>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>resource</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>action</AttributeValue>

 </Attribute>

 </Action>

 <Environment />

</Request>

Including:

• The subject and subject’s type of the resource’s request. These fields reference the

information stored in Keyrock. The subject can be a user attribute (username, email, etc.),

a specific organization, etc. although the email is being used right now in PHOENIX.

• The resource: endpoint (protocol + IP + PORT) + path of the resource’s request.

• The action: method of the resource's request ("POST", "GET", "PATCH", "DELETE").

In the response, there are three possible verdicts: Permit, NotApplicable and Deny. All of them

include 200 – "OK" as response code.

The following boxes show the format of the different cases.
RESPONSE: HTTP/1.1 200 OK; Verdict = Permit

<Response>

 <Result ResourceID="resource">

 <Decision>Permit</Decision>

 <Status>

 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

22/02/2022 -v.2.0 Page 41 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 </Status>

 <Obligations>

 <Obligation ObligationId="liveTime" FulfillOn="Permit">

 </Obligation>

 </Obligations>

 </Result>

</Response>

RESPONSE: HTTP/1.1 200 OK; Verdict = NotApplicable

<Response>

 <Result ResourceID="resource">

 <Decision>NotApplicable</Decision>

 <Status>

 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

 </Status>

 </Result>

</Response>

RESPONSE: HTTP/1.1 200 OK; Verdict = Deny

<Response>

 <Result ResourceID="resource">

 <Decision>Deny</Decision>

 <Status>

 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

 </Status>

 </Result>

</Response>

4.3.2.3 Capability Manager

In the DCapBAC scenario, the Capability Manager handles the first request of the authorisation

access-control phase (the authorisation request).

It provides a REST API for receiving authorisation queries. These requests must include the

authentication token already issued by Keyrock. When an authorisation query is received, the

Capability Manager sends an authentication token validation to Keyrock and once the token has

been validated, it creates an XACML authorisation request and sends it to the XACML-PDP

engine. If a positive verdict has been received, it issues the Capability Token (authorisation

token) which will be later used in the second authorisation request of the access-control process

(access to the resource).

22/02/2022 -v.2.0 Page 42 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

The next box shows the format of a sample request.
POST https://phoenix.odins.es:3030

Content-Type: application/json

{

"token": "authTokenReceivedFromKeyrock",

"de": "http://phoenix.odins.es:1030",

"ac": "GET",

"re": "/ngsi-ld/v1/entities/.*"

}

There are three possible responses shown in the following boxes, the first one with a valid

answer (the token is received in the payload, as a json object in String format), the second one

indicating a problem with the authentication token and the third one with the component

indicating that the token couldn’t be created (unknown reason).
RESPONSE: HTTPS/1.1 200 OK

"{Capability token}"

RESPONSE: HTTPS/1.1 401 Unauthorized

{"error": {"message": "Auth Token has expired", "code":401, "

title":"Unauthorized"}}

RESPONSE: HTTPS/1.1 500 Internal Server Error

"Can't generate capability token"

A sample request could include this information:

• token = valid Keyrock token (for instance: 35ecf5d5-f9f5-417f-abe7-dc91cc13262f).

• device = https://phoenix.odins.es:1030

• action = GET

• resource = /ngsi-ld/v1/entities/.*

Assuming a Keyrock token had been submitted to user LTU_pilot@phoenix.org, a possible

response could be this:
{

 "id": "va6t2r5qet9p85tt3sf73ihcje",

 "ii": 1624449195,

 "is": "capabilitymanager@odins.es",

 "su": "LTU_pilot@phoenix.org",

 "de": "https://phoenix.odins.es:1030",

 "si":

"MEYCIQC7vXKpBaLd3N0jw5Sn1BLvVDGtLfeZQn0db3Ub9ZSInQIhAPY7CTDNpZVf8kLOOU7tRGEuFjXNKsxpWLvCs

1NG4mO+",

 "ar": [

22/02/2022 -v.2.0 Page 43 of 62

https://phoenix.odins.es:3030/
https://phoenix.odins.es:10/
mailto:LTU_pilot@phoenix.org

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 {

 "ac": "GET",

 "re": "/ngsi-ld/v1/entities/.*"

 }

],

 "nb": 1624450195,

 "na": 1624460195

}

In addition to other internal information, the json also includes two relevant attributes:

• nb (not before). Seconds UTC after the epoch to set the beginning of the validity of the

token.

• na (not after). Seconds UTC after the epoch to set the end of the validity of the token.

4.3.2.4 PEP Proxy

The PEP Proxy is responsible for enforcing the authorisation when an access request to a

resource is received (third and final request to access the data) directed to one of the PHOENIX

components (Context Broker, Z-Wace/WMP Actuation Agent and Historical Data component).

These queries must contain a Capability Token (sent as the value of a custom x-auth-token http

header in the request) that will be validated by the PEP Proxy and, if the evaluation is positive, it

will be forwarded to the corresponding API. The response will be forwarded back to the

requester.

Based on this design, and considering that the only information analysed is an http header, the

PEP Proxy supports any REST API.

4.3.3 Interactions

This section shows the complete flow that a Service/Device will have to carry out to gain access

to the API offered by the PHOENIX components protected by the S&P framework. It represents

a full valid exchange, assuming that valid credentials are being used and after having received

valid and not expired tokens.

At this point there are a number of configuration steps that should be ready:

• The Services/Devices have been registered in the system using the credentials of an

existing user of Keyrock.

• The XACML policies have been configured.

22/02/2022 -v.2.0 Page 44 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Figure 17 – Sequence diagram of a full secure access to a resource using the S&P framework

Following the previous diagram, the first request corresponds with the authentication phase. The

Service/Device must send a POST request to /v1/auth/tokens (Keyrock) with its user credentials

to obtain an authentication token (AuthN token). The format of the request was described in the

Keyrock section. The Service/Device will receive this token in the X-Subject-Token header in

the response.

The second request must be sent to the Capability Manager component of DCapBAC, which

checks whether the Service/Device has access to the resource. As a result, an authorisation token

(Capability Token) will be issued and will be returned as the payload of the response.

When a Service/Device sends a POST request to / (Capability Manager), it will extract the next

information from it (as was described in the Capability Manager section):

• The authentication token (AuthN token).

• The base part of the request (protocol + IP + PORT). There will be a PEP Proxy listening

in this address.

• The method of the request (“POST”, “GET”, “PATCH”, “DELETE”, “PUT”).

• The url of the request.

22/02/2022 -v.2.0 Page 45 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

With this information the Capability Manager will:

• Access Keyrock to validate the authentication token. This access will validate if the token

exists and whether it is expired or not.

• Access the XACML framework for validating authorisation requests (through PDP) and

obtain the resource (verdict).

• Issue and return an authorisation token called Capability Token which is a signed json

object that contains all the required information for the authorisation phase such as the

resource to be accessed, the action to be performed and the validity of the token.

When an access resource request is received by PEP Proxy, it will:

• Extract the Capability Token from the x-auth-token header.

• Validate the token.

• Forward the request to the right component (Context Broker, etc.).

• Forward the response received to the requester.

4.3.4 Proxies deployed

Based on the distributed design of the security components and how the validation is done at the

PEP Proxy using the Capability Token, each proxy has its own identity that must match the de

attribute of the received token. This means one proxy can only protect one component and

therefore it will be necessary to deploy as many proxies as components need to be protected.

In PHOENIX there are 3 components protected by their own instance of PEP Proxy.

Figure 18 – Proxies deployed in the Smartness Hub

The base address for each PEP Proxy is detailed in the next table.

22/02/2022 -v.2.0 Page 46 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Table 7 – Deployed instances of PEP Proxy

Component Base address of the PEP Proxy

Context Broker http://phoenix.odins.es:1030

Z-Wave/WMP Actuation Agent http://phoenix.odins.es:1028

Historical Data component http://phoenix.odins.es:1029

4.4 Integration of different technologies requiring security and/or privacy

There are different devices that have their own requirements in terms of security and in this

section a more detailed description of the special features of each integration is described.

4.4.1 Z-Wave / WMP

The integration of Z-Wave and Intesis WMP devices is divided in two parts, the Actuation Agent

at the server and the client, executed at the IoT-Gateways using node-RED flows, which use

different techniques for managing security for both actuation and sending sensor values.

4.4.1.1 Actuation

From a security perspective, the Actuation Agent must be accessed using the S&P framework in

the way described in the previous sections.

As documented in D3.2, two resources are offered to the IoT Gateways:

• /zwaveactuator/pendingUpdates for getting the pending updates of the gateway (GET).

• /zwaveactuator/confirmUpdate for confirming that an update has been consumed by

the gateway and can be removed from the list of pending updates from the Agent

(POST).

First of all an authentication token must be requested to Keyrock. This process is repeated

periodically.

Figure 19 – Get authentication token

22/02/2022 -v.2.0 Page 47 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

After that, also periodically, authorisation tokens must be obtained in order to get access to the

resources provided by the Agent.

Figure 20 – Get authorisation tokens for actuation

Having valid tokens, the actuation process will be executed periodically. Here is where both

authorisation tokens are used for communicating with the Agent through the PEP Proxy.

Figure 21 – Using the tokens (GET and POST) in the Actuation flow

4.4.1.2 Reading and publishing values

In the reading flow, a different authorisation token for publishing the values directly to the

Context Broker must be obtained. In this case the PEP Proxy used for the communication is

different, but the authentication token used is the same that was obtained following the

instructions of the previous section as long as it’s still valid.

Figure 22 – Get authorisation tokens for publishing readings

22/02/2022 -v.2.0 Page 48 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

Once a valid token has been received and there are readings pending to send, it is used for

sending the values.

Figure 23 – Using the token to send readings (POST)

4.4.2 Platform to Platform (LTU pilot)

The only pilot that includes a direct integration with the Context Broker is the Swedish one.

The LTU platform uses another FIWARE Context Broker and an Agent is acting as a forwarded

of information towards the PHOENIX Smartness Hub using NGSI-LD. Again this Agent must

follow the set of steps required by the S&P framework to get access to the resources.

A sample publication is shown in the next box.
POST https://phoenix.odins.es:1030/ngsi-ld/v1/entityOperations/upsert/?options=update

Content-Type: application/json

fiware-service: phoenix

fiware-servicepath: /

[{

 "id": "urn:ngsi-ld:Observation:EntityId",

 "type": "http://purl.org/iot/ontology/iot-stream#StreamObservation",

 "http://www.w3.org/ns/sosa/hasResult": {

 "type": "Property",

 "value": "1782.171",

 "observedAt": "2021-09-22T10:00:00.000Z"

 }

}]

4.4.3 MQTT

The security aspects covered in MQTT integrations are:

• Connections are cyphered (TLS). This way privacy and integrity are guaranteed.

• Devices must be authenticated using their own credentials (login + password).

22/02/2022 -v.2.0 Page 49 of 62

https://phoenix.odins.es/

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

• Authorization is handled by the Access-Control list (ACL) mechanism provided by the

MQTT broker, which offers a way to have a fine-grained control of the topics allowed for

each device, IoT gateway or BMS.

This traditional security system has also been supported by the PHOENIX Smartness Hub to

cover alternative scenarios where the devices are preconfigured or there is no way to integrate

them with the S&P framework. Although it’s not the preferred solution, this is accepted as long

as all the privacy and security requirements are fulfilled.

4.5 Security Policies

The next tables show the list of security Policies defined so far in the framework (all of them

grant permission to access the resource included in the Policy). There is one table per component

that contains groups formed by one or more rows in grey background colour with the action and

the resource of a Policy followed by 1 or more rows in white background colour with the

subjects that have access to this combination. This is the base to create the set of XACML

policies that will be used by the PDP.

Table 8 – Policies for the Context Broker

Context Broker (Device = https://phoenix.odins.es:1030)
PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:UMU-Pleiades-BlockB-Roof-Gateway-

Actuator/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:UMU-Pleiades-BlockB-.*-Thermostat-.*-

Actuator/attrs/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:UMU-Pleiades-BlockB-.*-SmartPlug.*-

Actuator/attrs/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:UMU-Estates-Garage-Gateway-Actuator/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:KAMA-Building-Flat.*-SmartPlug.*-

Actuator/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:KAMA-Building-Flat.*-LEDBulb.*-

Actuator/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:KAMA-Building-Flat.*-Thermostat.*-

Actuator/.*

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:Device:KAMA-Building-Flat.*-Switch.*-Actuator/.*

PATCH /ngsi-ld/v1/entities/MIW-.*-Actuator

PATCH /ngsi-ld/v1/entities/SKE-.*-Actuator

22/02/2022 -v.2.0 Page 50 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

UMU_service_provider@phoenix.org

Ubitech_service_provider@phoenix.org

S5_service_provider@phoenix.org

POST /ngsi-ld/v1/entities/.*/attrs

zwave@phoenix.org

POST /ngsi-ld/v1/entityOperations/upsert/.*

LTU_pilot@phoenix.org

GET /ngsi-ld/v1/entities

GET /ngsi-ld/v1/entities/.*

GET /ngsi-ld/v1/entities/.*/attrs

GET /ngsi-ld/v1/entities/.*/attrs/.*

UMU_service_provider@phoenix.org

Ubitech_service_provider@phoenix.org

S5_service_provider@phoenix.org

LTU_pilot@phoenix.org

reader@phoenix.org

Table 9 – Policies for the Actuation Agent

Actuation Agent (Device = https://phoenix.odins.es:1028)
GET /zwaveactuator/pendingUpdates/.*

POST /zwaveactuator/confirmUpdate/.*

zwave@phoenix.org

Table 10 – Policies for the Historical Data component

Historical Data component (Device = https://phoenix.odins.es:1029)
GET /ngsi-ld/v1/temporal/entities.*

UMU_service_provider@phoenix.org

Ubitech_service_provider@phoenix.org

S5_service_provider@phoenix.org

LTU_pilot@phoenix.org

reader@phoenix.org

22/02/2022 -v.2.0 Page 51 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

5 Conclusions

This document has described the work performed within WP4 in order to provide a first working

version of the PHOENIX Smartness Hub.

At this stage, with the NGSI-LD interfaces operational and the components already making use

of the Smart Data Models, the efforts on the modelling part have been done on extending the KG

with the addition of a triplestore and the definition of a model for the SRI service.

At the functional layer, both user-centric and grid services are now working with real data once

the pilots are ready and hence improvements can be obtained by analysing their outputs and by

using them as relevant feedback for the implemented algorithms.

And finally, the Security & Privacy framework has received a significant upgrade that allows

users, services and devices to communicate and have access to information in a secure way,

always respecting the security policies.

22/02/2022 -v.2.0 Page 52 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

6 References

[1] Smart Data Models https://smartdatamodels.org/

[2] Purl Ontology http://purl.org/iot/ontology/iot-stream

[3] IotCrawler https://iotcrawler.eu/

[4] Semantic Sensor Network Ontology https://www.w3.org/TR/vocab-ssn/

[5] Apache Jena Fuseki https://jena.apache.org/index.html

[6] The RDF Data Cube Vocabulary https://www.w3.org/TR/vocab-data-cube/

[7] Stochastic Processes https://www.sciencedirect.com/topics/neuroscience/stochastic-processes

[8] SAREF’s extension for building domain

https://saref.etsi.org/extensions.html#SAREF4BLDG

[9] BRICK’s schema https://brickschema.org/

[10] https://www.iotacommunications.com/blog/how-can-you-improve-indoor-air-quality/

[11] https://www.meazurem.com/blog/how-indoor-humidity-and-temperature-affects-your-

health/

[12] Usman Habib and Gerhard Zucker, Automatic occupancy prediction using unsupervised

learning in buildings data, 2017 IEEE 26th International Symposium on Industrial Electronics

(ISIE)

[13] Candanedo et al, A methodology based on Hidden Markov Models for occupancy detection

and a case study in a low energy residential building, Energy and Buildings Volume 148, 1

August 2017, Pages 327-341

22/02/2022 -v.2.0 Page 53 of 62

https://smartdatamodels.org/
http://purl.org/iot/ontology/iot-stream
https://iotcrawler.eu/
https://www.w3.org/TR/vocab-ssn/
https://jena.apache.org/index.html
https://www.w3.org/TR/vocab-data-cube/
https://www.sciencedirect.com/topics/neuroscience/stochastic-processes
https://saref.etsi.org/extensions.html%23SAREF4BLDG
https://brickschema.org/
https://www.iotacommunications.com/blog/how-can-you-improve-indoor-air-quality/
https://www.meazurem.com/blog/how-indoor-humidity-and-temperature-affects-your-health/
https://www.meazurem.com/blog/how-indoor-humidity-and-temperature-affects-your-health/

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

7 Annex I

A portion of the code that allows the connection to the Context Broker for the extraction and

flattening of the data streams involved in the analysis process is shown below.
(…)

def retrieve_data_from_CB(Type, property_observed,ids_streams_list,dateStart, dateEnd):
 dfs = []
 for device in ids_streams_list:
 urlAux
='{}?id={}&type={}&attr={}&timerel={}&time={}&endTime={}'.format(urlTIAMAT,device,Type,property_observed,'
between',dateStart,dateEnd)
 resp = requests.request("GET", urlAux, headers=cb_headers, data={})
 df=pd.DataFrame(resp[property_observed])[["value","observedAt"]]
 dfs.append(df)
 return dfs

def extract_flat_data(dfs):
 F = dfs[:]
 df_aggregated = pd.concat(F)
 return df_aggregated

(…)

The code shown below includes part of the connection to the Context Broker for the storage of

the entities related to the algorithm execution results.
def post_cb(entity_payload):

 payload = json.dumps(entity_payload)
 response = requests.request("POST", urlCB, headers=cb_headers, data=payload)

 return response.status_code

Below is part of the code related to the multivariable generic forecasting algorithm developed.
def forecast_multivariable(data,all_dates):

 (...)

 j = 0
 for i in tqdm(all_ts):
 j += 1
 df_subset = data[data['time_series'] == i]
 # initialize setup from pycaret.regression
 s = setup(df_subset, target = 'value', train_size = 0.95,
 data_split_shuffle = False, fold_strategy = 'timeseries', fold = 3,
 ignore_features = ['observedAt', 'time_series'],
 numeric_features = ['day_of_year', 'year',"hour","minute"],
 categorical_features = ['month', 'day_of_week'],
 silent = True, verbose = False, session_id = 123)

 # compare all models and select best one based on MAE
 best_model = compare_models(sort = 'MAE', verbose=False)
 # capture the compare result grid and store best model in list
 p = pull().iloc[0:1]
 p['time_series'] = str(i)
 all_results.append(p)
 # finalize model i.e. fit on entire data including test set
 f = finalize_model(best_model)
 # attach final model to a dictionary
 final_model[i] = f
 # save transformation pipeline and model as pickle file

22/02/2022 -v.2.0 Page 54 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 save_model(f, model_name='trained_models/' + str(j), verbose=False)

 (…)

 j = 0
 for i in tqdm(data['time_series'].unique()):
 j +=1
 l = load_model('trained_models/' + str(j), verbose=False)
 p = predict_model(l, data=score_df)
 p['time_series'] = i
 all_score_df.append(p)

 concat_df = pd.concat(all_score_df, axis=0)
 data["observedAt"] = pd.to_datetime(data["observedAt"].dt.strftime('%Y-%m-%d %H:%M'))
 concat_df["observedAt"] = pd.to_datetime(concat_df["observedAt"].dt.strftime('%Y-%m-%d %H:%M'))
 final_df = pd.merge(concat_df, data, how = 'left', left_on=['observedAt', 'time_series'], right_on =
['observedAt', 'time_series'])

 return final_df,concat_results

Finally, a fragment of proposed multi-objective optimisation algorithm is shown below.

X,Y = [],[]

n = 30

tie = np.array(user[0:n]).reshape(3*n)

n_var = len(tie)

lims = 96

xl = np.repeat(-lims,n_var)

xu = np.repeat(lims,n_var)

problem = FunctionalProblem(n_var,

 PROB,

 xl=xl,

 xu=xu

)

algorithm = NSGA2(pop_size=300,

 sampling=get_sampling("int_random"),

 crossover=get_crossover("int_sbx"),

 mutation=get_mutation("int_pm"),

 eliminate_duplicates=True)

termination = MultiObjectiveSpaceToleranceTermination(tol=0.05,

 n_last=100000,

 nth_gen=5,

 n_max_gen=1e20,

 n_max_evals=None)

res2 = minimize(problem,

 algorithm,

 termination=termination,

 seed=1,

 save_history=True)

22/02/2022 -v.2.0 Page 55 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

8 Annex II

The code snippets below refer to the default user comfort calculations:

 def get_full_comfort_info(self, zone_id: str, user_id: str, metrics: list):

 """

 Build a json formatted dictionary with all relevant information for a list of comfort

 metrics, containing: current comfort state of the list of metrics, current measured values

 of related sensors, average values of related sensor values for the last 15 days

 :param `str` zone_id: The id of the zone/area to calculate comfort and get sensor values

 :param `str` user_id: The id of the user to calculate comfort status

 :param `list` metrics: The list of comfort metrics for which to calculate status and retrieve

 related sensor values

 :return `Response obj`: The django rest framework Response filled with data, or error

 message and the error status code

 """

 # fetch area's latest measurements

 response = get_comfort_related_observations_of_zone(zone_id, metrics)

 if response.status >= 500:

 error_message = response.error

 status_code = response.status

 logger.error('No sensor values could be retrieved for this area: "{}". \

 \nGot error message: {} with status code {}'.format(

 zone_id, error_message, status_code))

 # TODO: here return a not available label

 return Response(data=error_message, status=status_code)

 response_data = response.data

22/02/2022 -v.2.0 Page 56 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 # TODO: check first if the timestamp of current data is valid and then proceed to mapping,

 # otherwise return a not available lable

 current_sensor_values = map_properties_to_values(response_data)

 comfort_state = self.get_user_comfort_for_area(zone_id, user_id, metrics, current_sensor_values)

 # update the confort state dict with the current sensor values retrieved earlier

 comfort_state.update(current_sensor_values)

 # properties, i.e. "co2", mapped to observation ids

 mapped_property_ids = map_properties_to_ids(response_data)

 # aggregated values for each the properties

 aggregated_values = self.get_aggregated_values_for_metrics(

 mapped_property_ids, metrics)

 comfort_state.update(aggregated_values)

 return Response(data=comfort_state)

The code snippet below refers to the unsupervised clustering to acquire labels of occupancy for

past data:

def occupancy_states_job():

 """

 This job will run once a week and will create a dataset of measurements of the last two weeks,

 label them as samples that denote an occupied (or not) area using clustering and then train a Random

Forest

 Classifier to be used for predictions in the upcoming week.

 """

 elastic_search_config = apps.get_app_config('elastic_search')

 elastic_status = elastic_search_config.elastic_status

 if elastic_status == 'down':

22/02/2022 -v.2.0 Page 57 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 logger.error("ElasticSearch not available. Cronjob will not run.")

 return

 else:

 elastic_connector = elastic_search_config.elastic_connector

 for demo in demo_pilots:

 build_response = get_demo_buildings(demo, filter_ids=True)

 if build_response.status >= 500:

 logger.error(

 f"Couldn't retrieve buildings of demo {demo}. An error occured: {build_response.error}")

 # continue to next demo

 continue

 building_ids = build_response.data

 index_env_name = demo_indices[demo]['zones_index']

 logger.debug(f"Index env variable name '{index_env_name}'")

 index = get_config(index_env_name)

 logger.debug(f"Index to be used: '{index}'")

 failed_buildings = []

 failures_per_building = {}

 for building in building_ids:

 zone_response = get_building_residential_zones(building, True)

 if zone_response.status >= 500:

 logger.error(

 f"Couldn't retrieve zones of building {building}. An error occured:

{zone_response.error}")

 failed_buildings.append(building)

 # continue to next building

 continue

22/02/2022 -v.2.0 Page 58 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 zone_lst = zone_response.data

 logger.debug(f"Residential zones: {zone_lst}")

 if len(zone_lst) == 0:

 # the specific building has no residential zones

 continue

 # only if the demo building contains residential zones there is a point for checking the

 # respective index existence and creating it if not available

 if not elastic_connector.check_index_existence(index):

 logger.info(

 f"Index {index} was not found. It will be created.")

 mapping = zones_index_mapping

 elastic_connector.create_index(index, mapping)

 failed_zones = []

 for zone_id in zone_lst:

 # TODO: we could find a way to choose which types of observations will be used

 metrics = ['thermal', 'humidity', 'visual', 'air']

 # metrics = ['thermal', 'visual', 'air']

 observ_response = get_comfort_related_observations_of_zone(

 zone_id, metrics)

 if observ_response.status >= 500:

 logger.error(

 f"Couldn't retrieve observations of zone {zone_id}. An error occured:

{observ_response.error}")

 failed_zones.append(zone_id)

 # continue to next zone

 continue

22/02/2022 -v.2.0 Page 59 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 observations = observ_response.data

 # get the observation ids for the respective properties

 property_id_map = map_properties_to_ids(

 observations, key_value=True)

 dates = DatesHelper.calculate_dates_list(

 num_of_days=14,

 fmt='%Y-%m-%d',

 last_date=DatesHelper.get_previous_day_datetime()

)

 # get the list of the of the dataframes of each observation

 observations_dfs = _load_dataframes(property_id_map, dates)

 # reindex df and in parallel complete the timestamps missing

 # reindexed_dfs = \

 # [_reindex_dataframe(df) for df in observations_dfs]

 reindexed_dfs = _reindex_dataframes(observations_dfs)

 # combine all dfs into one by matching their timestamps

 merged_dfs = _merge_dataframes(reindexed_dfs)

 counted_nas = _calculate_nas(merged_dfs)

 # missing timestamps percentage

 total_measurements = len(

 merged_dfs.index)*len(merged_dfs.columns)

 missing_ts_perc = round(

 (sum(counted_nas)/total_measurements)*100, 2)

 logger.debug(

22/02/2022 -v.2.0 Page 60 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 f"NAs percentage in df {missing_ts_perc}%")

 # preprocess the data and keep the first to be enriched later with labels and

 # the second only to be used for the clustering procedure

 full_df, processed_df = _df_preprocessing(merged_dfs, demo)

 # clustering of timeseries samples

 clustering_job = KMeansClustering(cluster_num=2)

 clustering_job.run_clustering(processed_df)

 final_df = _define_df_labels(full_df, clustering_job)

 # _make_plots(final_df, len(final_df.columns), zone_id)

 # classification training

 classification_job = RFClassification()

 classification_job.train_classifier(final_df, y_label='state')

 accuracy, recall = classification_job.get_scores()

 logger.info(

 f"Test scores after training: Accuracy={accuracy}, Recall={recall}")

 # load zone document

 zone_data = get_zone_data_by_id(zone_id)

 if len(zone_data) == 0:

 # zone doc wasn't found, it will be initialized

 zone_data = _init_zone_document(building)

 # fill doc with occupancy data

 zone_data['occupancy_model'] = _fill_occupancy_model_data(

 classification_job.get_rfc_model_base64(), list(property_id_map.keys()),

round(accuracy*100, 2), round(recall*100, 2), missing_ts_perc)

 # store back the zone document

 elastic_connector.write_to_index(index, zone_id, zone_data)

22/02/2022 -v.2.0 Page 61 of 62

H2020 Grant Agreement Number: 893079
WP4/D4.2 PHONENIX Smartness Hub implementation – Intermediate Version

 # log and add any zone failures

 if len(failed_zones) != 0:

 logger.error(f'Demo {demo} --- Modeling failed for {len(failed_zones)}/{len(zone_lst)}

residential zones of building {building}.\n'

 f'Failed zones: {failed_zones}')

 failures_per_building.update({building: failed_zones})

 # final logs for demo

 if len(failed_buildings)+len(failures_per_building) == 0:

 logger.info(

 f'Demo {demo} --- Modeling completed for all residential zones and all buildings.')

 else:

 if len(failed_buildings) != 0:

 logger.error(

 f"Demo {demo} --- Failed to fetch zones (residential or not) for some buildings of

demo: {failed_buildings}")

 if len(failures_per_building) != 0:

 logger.error(

 f'Demo {demo} --- Modeling failed for some zones of buildings:

{failures_per_building}')

22/02/2022 -v.2.0 Page 62 of 62

	1 Introduction
	1.1 Scope of the document
	1.2 Relevance to other deliverables
	1.3 Structure of the document

	2 Integrated Data Models, Knowledge Graphs and Automatic Semantics
	2.1 Knowledge Graph
	2.2 SRI model
	2.3 Energy flexibility data uses a subset of SAREF
	2.4 Automatic Semantics

	3 Data analytics services
	3.1 Data analytics for user-centric services
	3.1.1 Occupancy nowcasting and forecasting for building occupants
	3.1.2 Default Comfort calculation for building occupants
	3.1.3 Descriptive analytics for the delivery of basic metrics

	3.2 Data analytics for grid integration services
	3.2.1 Context of algorithms for grid integration
	3.2.2 Algorithms for forecasting, now-casting and benchmarking
	3.2.3 Algorithms set for optimal operations for grid integration services
	3.2.4 Investigation of pilot's real data for algorithms testing

	4 Privacy and Security
	4.1 Overview
	4.2 Risk analysis associated to privacy/security features
	4.2.1 Non-functional risks
	4.2.2 Functional risks

	4.3 Security Components
	4.3.1 Architecture
	4.3.2 Components
	4.3.2.1 Keyrock
	4.3.2.2 XACML/PDP + PAP
	4.3.2.3 Capability Manager
	4.3.2.4 PEP Proxy

	4.3.3 Interactions
	4.3.4 Proxies deployed

	4.4 Integration of different technologies requiring security and/or privacy
	4.4.1 Z-Wave / WMP
	4.4.1.1 Actuation
	4.4.1.2 Reading and publishing values

	4.4.2 Platform to Platform (LTU pilot)
	4.4.3 MQTT

	4.5 Security Policies

	5 Conclusions
	6 References
	7 Annex I
	8 Annex II

